SCBS227E - JULY 1993 - REVISED MARCH 1997 - Support the VME64 ETL Specification - Reduced TTL-Compatible Input Threshold Range - High-Drive Outputs (I_{OH} = -60 mA I_{OL} = 90 mA) Support Equivalent 25-Ω Incident-Wave Switching - V_{CC}BIAS Pin Minimizes Signal Distortion During Live Insertion - Internal Pullup Resistor on OE Keeps Outputs in High-Impedance State During Power Up or Power Down - Members of the Texas Instruments Widebus™ Family - State-of-the-Art EPIC-IIB™ BiCMOS Design Significantly Reduces Power Dissipation - Distributed V_{CC} and GND Pin Configuration Minimizes High-Speed Switching Noise - Equivalent 25-Ω Series-Damping Resistor on B Port - Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors - Package Options Include Plastic 300-mil Shrink Small-Outline (DL) and Thin-Shrink Small-Outline (DGG) Packages and 380-mil Fine-Pitch Ceramic Flat (WD) Package Using 25-mil Center-to-Center Spacings #### SN54ABTE16246 . . . WD PACKAGE SN74ABTE16246 . . . DGG OR DL PACKAGE (TOP VIEW) ### description The 'ABTE16246 are 11-bit noninverting transceivers designed for asynchronous two-way communication between buses. These devices have open-collector and 3-state outputs. They allow data transmission from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable (\overline{OE}) input can be used to disable the device so that the buses are effectively isolated. When \overline{OE} is low, the device is active. The B port has an equivalent $25-\Omega$ series output resistor to reduce ringing. Active bus-hold inputs on the B port hold unused or floating inputs at a valid logic level. The A port provides for the precharging of the outputs via $V_{CC}BIAS$, which establishes a voltage between 1.3 V and 1.7 V when V_{CC} is not connected. The SN54ABTE16246 is characterized for operation over the full military temperature range of –55°C to 125°C. The SN74ABTE16246 is characterized for operation from –40°C to 85°C. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Widebus and EPICII-B are trademarks of Texas Instruments Incorporated. # SN54ABTE16246, SN74ABTE16246 11-BIT INCIDENT-WAVE SWITCHING BUS TRANSCEIVERS WITH 3-STATE AND OPEN-COLLECTOR OUTPUTS SCBS227E – JULY 1993 – REVISED MARCH 1997 ### **FUNCTION TABLE** | | | INPUTS | | | OPERATION | |----|------|--------|-------|------|--| | OE | 9DIR | 10DIR | 11DIR | 110E | OPERATION | | Н | Х | Х | Х | Х | Isolation | | L | Х | X | X | Χ | 1BI–8BI data to 1A–8A bus (OC [†]),
1A–8A data to 1BO–8BO bus | | L | L | X | X | Χ | 9A data to 9B bus | | L | Н | X | Χ | X | 9B data to 9A bus | | L | X | L | X | Χ | 10A data to 10B bus | | L | X | Н | Χ | X | 10B data to 10A bus | | L | X | Χ | L | L | 11A data to 11B bus | | L | X | X | L | Н | 11A, 11B isolation | | L | Χ | X | Н | Χ | 11B data to 11A bus | [†]OC = Open-collector outputs ## logic diagram (positive logic) SCBS227E - JULY 1993 - REVISED MARCH 1997 ### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† | Supply voltage range, V _{CC} | 0.5 | V to 7 V | |--|---------|----------------------------| | Input voltage range, V _I (except I/O ports) (see Note 1) | 0.5 | \mbox{V} to 7 \mbox{V} | | Voltage range applied to any output in the high or power-off state, VO | 0.5 V | to 5.5 V | | Current into any output in the low state, I _O | | 128 mA | | Input clamp current, $I_{ K }(V_{ I } < 0)$ | | -18 mA | | Output clamp current, I _{OK} (V _O < 0) | | -50 mA | | Package thermal impedance, θ _{JA} (see Note 2): DGG package | | 89°C/W | | DL package | | 94°C/W | | Storage temperature range, T _{stq} | -65°C 1 | to 150°C | [†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. ### recommended operating conditions (see Note 3) | | | | | ABTE1 | 6246 | SN74 | ABTE16 | 3246 | UNIT | |-------|------------------------------------|-----------------|-----|-------|------|------|--------|------|------| | | | | MIN | NOM | MAX | MIN | NOM | MAX | UNIT | | Vcc | Supply voltage | | 4.5 | 5 | 5.5 | 4.5 | 5 | 5.5 | V | | \/ | High-level input voltage | ŌĒ | 2 | | | 2 | | | V | | VIH | r light-lever input voltage | Except OE | 1.6 | | | 1.6 | | | V | | \/ | Low-level input voltage | ŌĒ | | | 8.0 | | | 0.8 | V | | VIL | Low-level input voltage | Except OE | | Š | 1.4 | | | 1.4 | V | | Vон | High-level output voltage | 1A-8A | | 9 | 5.5 | 0 | | 5.5 | V | | ٧ı | Input voltage | | 0 | 6 | VCC | 0 | | VCC | V | | 1 | High-level output current | B bus | | 5 | -12 | | | -12 | mA | | ІОН | riigh-level output current | 9A-11A | 000 |) | -24 | | | -64 | IIIA | | lai | Low-level output current | B bus | Q. | | 12 | | | 12 | mA | | lOL | Low-level output current | A bus | | | 64 | | | 90 | IIIA | | Δt/Δν | Input transition rise or fall rate | Outputs enabled | | | 10 | | | 10 | ns/V | | TA | Operating free-air temperature | | -55 | | 125 | -40 | | 85 | °C | NOTE 3: Unused pins (input or A-bus I/O) must be held high or low to prevent them from floating. NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed. ^{2.} The package thermal impedance is calculated in accordance with EIA/JEDEC Std JESD51. SCBS227E - JULY 1993 - REVISED MARCH 1997 ## electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) | PARAMETER | | TEST CONDITIONS | | SN | 54ABTE1 | 6246 | SN | 74ABTE | 16246 | UNIT | |----------------------|----------------|---------------------------------------|---------------------------------|--------|---------|----------------------|------|------------------|----------------------|------| | PAI | RAMETER | 151 00 | DNDITIONS | MIN | TYP† | MAX | MIN | TYP [†] | MAX | UNII | | VIK | | $V_{CC} = 4.5 \text{ V},$ | $I_{I} = -18 \text{ mA}$ | | | -1.2 | | | -1.2 | V | | | | $V_{CC} = 5.5 \text{ V},$ | I _{OH} = -100 μA | | | V _{CC} -0.2 | | | V _{CC} -0.2 | | | | B port | V 45V | I _{OH} = -1 mA | 2.4 | | | 2.4 | | | | | \/ - · · | | V _{CC} = 4.5 V | I _{OH} = -12 mA | 2 | | | 2 | | | V | | VOH | | $V_{CC} = 5.5 \text{ V},$ | I _{OH} = -1 mA | | | 4.5 | | • | 4.5 | V | | | 9A-11A | V 45V | I _{OH} = -32 mA | 2.4 | | | 2.4 | | | | | | | V _{CC} = 4.5 V | I _{OH} = -64 mA | | | | 2 | | | | | lOH | 1A-8A | $V_{CC} = 4.5 \text{ V},$ | V _{OH} = 5.5 V | | | 20 | | | 20 | μΑ | | | 5 / | | I _{OL} = 1 mA | | | 0.4 | | | 0.4 | | | | B port | V _{CC} = 4.5 V | I _{OL} = 12 mA | | | | | - | 0.8 | ., | | VOL | At | | I _{OL} = 64 mA | | | 0.55 | | | 0.55 | V | | | A port | V _{CC} = 4.5 V | I _{OL} = 90 mA | | | Z, | | | 0.9 | | | V _{hys} | • | | • | | 100 | | | 100 | | mV | | ,- | | ., , _, | V _I = 0.8 V | 100 | Q. | | 100 | | | | | I _{I(hold)} | B port | V _{CC} = 4.5 V | V _I = 2 V | -100 | 4 | | -100 | | | μΑ | | (/ | | V _{CC} = 5.5 V, | V _I = 0 to 5.5 V | | 25 | ±500 | | | ±500 | | | | Control inputs | Ì | ., ., ., ., | | 0 | ±1 | | | ±1 | | | ΙĮ | A or B ports | V _{CC} = 5.5 V, | $V_I = V_{CC}$ or GND | Q | | ±20 | | | ±20 | μΑ | | I _{OZH} ‡ | 9A-11A | $V_{CC} = 5.5 \text{ V},$ | V _O = 2.7 V | | | 10 | | | 10 | μΑ | | lozL‡ | 9A-11A | V _{CC} = 5.5 V, | V _O = 0.5 V | | | -10 | | | -10 | μΑ | | | A port | | | -50 | -120 | -180 | -50 | | -180 | | | IO | B port | $V_{CC} = 5.5 \text{ V},$ | $V_0 = 2.5 \text{ V}$ | -25 | -52 | -90 | -25 | | -90 | mA | | l _{off} | • | $V_{CC} = 0$, V_{I} or $V_{O} \le$ | 4.5 V, V _{CC} BIAS = 0 | | | ±100 | | | ±100 | μΑ | | - | | V _{CC} = 5.5 V, | Outputs high | | 28 | 36 | | 28 | 36 | | | Icc | A or B ports | $I_{O} = 0$, | Outputs low | | 38 | 48 | | 38 | 48 | mA | | | | $V_I = V_{CC}$ or GND | Outputs disabled | | 20 | 32 | | 20 | 32 | | | | | V _{CC} = 5 V, | OE high | \top | 0.02 | | | 0.02 | | mA/ | | ICCD | A or B ports | C _L = 50 pF | OE low | | 0.33 | | | 0.33 | | MHz | | Ci | Control inputs | V _I = 2.5 V or 0.5 V | • | | 2.5 | 4 | | 2.5 | 4 | pF | | C _{io} | I/O ports | V _O = 2.5 V or 0.5 V | | \top | 4.5 | 8 | | 4.5 | 8 | pF | $[\]uparrow$ All typical values are at V_{CC} = 5 V, T_A = 25°C. [‡]The parameters I_{OZH} and I_{OZL} include the input leakage current. SCBS227E - JULY 1993 - REVISED MARCH 1997 ### live-insertion specifications over recommended operating free-air temperature range | PARAMETER | | | SN54ABTE | SN74ABTE16246 | | | UNIT | | | | |-----------|---------|--|------------------------|------------------------------|----------|------|------|------------------|------|------| | FARAI | WIETER | TEST CONDITIONS | | | MIN TYPT | MAX | MIN | TYP [†] | MAX | UNIT | | loo (Va | a PIAC) | V _{CC} = 0 to 4.5 V,
V _{CC} BIAS = 4.5 V to 5.5 V, I _{O(DC)} = 0 | | | | 700 | | 250 | 700 | μA | | 166 (46 | CBIAS) | $V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}^{\ddagger},$
$V_{CCBIAS} = 4.5 \text{ V to } 5.5 \text{ V, } I_{O(DC)} = 0$ | | | | 20 | | | 20 | μΑ | | Va | A nort | Vac = 0 | V _{CC} BIAS = | 4.5 V to 5.5 V | 1.1 (1.5 | 1.9 | 1.1 | 1.5 | 1.9 | V | | Vo | A port | ACC = 0 | V _{CC} BIAS = | 4.75 V to 5.25 V | 1.3 1.5 | 1.7 | 1.3 | 1.5 | 1.7 | V | | lo. | A nort | Vac - 0 | $V_{O} = 0$, | V _{CC} BIAS = 4.5 V | -20 | -100 | -20 | | -100 | | | Ю | A port | ACC = 0 | V _O = 3 V, | V _{CC} BIAS = 4.5 V | 20 | 100 | 20 | | 100 | μΑ | [†] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$. # switching characteristics over recommended ranges of supply voltage and operating free-air temperature, C_L = 50 pF (unless otherwise noted) (see Figure 2) | PARAMETER | FROM
(INPLIT) | FROM TO (INPUT) (OUTPUT) | | CC = 5 \
\ = 25°C | <i>'</i>
; | SN54ABTE16246 | | SN74ABTE16246 | | UNIT | |--------------------|------------------|--------------------------|-----|----------------------|---------------|---------------|------|---------------|------|------| | | (1141 01) | (0011 01) | MIN | TYP | MAX | MIN | MAX | MIN | MAX | | | t _{PLH} | А | В | 1.5 | 3.1 | 4.2 | 1.5 | 5.4 | 1.5 | 5.2 | ns | | t _{PHL} | A | Ь | 1.5 | 3.5 | 4.6 | 1.5 | 5.4 | 1.5 | 5.2 | 115 | | t _{PLH} | 0P 11P | 9A-11A | 1.5 | 3 | 3.8 | 1.5 | 4.7 | 1.5 | 4.5 | ns | | t _{PHL} | 9B–11B | 9A-11A | 1.5 | 3.2 | 4 | 1.5 | 4.7 | 1.5 | 4.5 | 115 | | t _{PLH} § | | | 1.5 | 3.2 | 4 | 1.5 | 4.7 | 1.5 | 4.5 | | | t _{PLH} ¶ | 1B-8B | 1A-8A | 7.5 | 8.9 | 9.7 | 7.5 | 10.6 | 7.5 | 10.3 | ns | | t _{PHL} | | | 1.5 | 3.2 | 4 | 1.5 | 4.7 | 1.5 | 4.5 | | | ^t PZH | ŌĒ | 9A–11A | 2 | 4.3 | 5.3 | 2 | 6.4 | 2 | 6.2 | ns | | tPZL | OE | 1A-11A | 2 | 4.4 | 5.4 | 2 | 7 | 2 | 6.8 | 115 | | ^t PZH | ŌĒ | В | 2 | 4.3 | 6 | 2 | 7.3 | 2 | 7.1 | ns | | t _{PZL} | OE | В | 2 | 4.5 | 6.4 | 2 | 7.5 | 2 | 7.3 | 115 | | t _{PHZ} | ŌĒ | 9A–11A | 2 | 4.2 | 5.9 | 2 | 7 | 2 | 6.7 | ns | | t _{PLZ} | OE . | 1A-11A | 2 | 3.5 | 4.6 | 2 | 5.4 | 2 | 5.1 | 115 | | ^t PHZ | OE | В | 2.5 | 4.3 | 6.2 | 2.5 | 7.2 | 2.5 | 7 | ns | | t _{PLZ} | OL. | ь | 2 | 3.6 | 5 | 2 | 5.8 | 2 | 5.5 | 115 | [§] Measurement point is V_{OL} + 0.3 V. [‡] V_{CC} - 0.5 V < V_{CC}BIAS [¶] Measurement point is VOL + 1.5 V. SCBS227E - JULY 1993 - REVISED MARCH 1997 ## extended switching characteristics over recommended ranges of supply voltage and operating free-air temperature, C_L = 50 pF (unless otherwise noted) (see Note 4 and Figure 2) | PARAMETER | FROM
(INPUT) | TO
(OUTPUT) | LOAD | | CC = 5 \
4 = 25°C | | SN54ABT | E16246 | SN74ABTI | E16246 | UNIT | |--------------------|-----------------|----------------|---------------------------------|-----|----------------------|-----|---------|--------|----------|--------|------| | | (INFOT) | (0011-01) | | MIN | TYP | MAX | MIN | MAX | MIN | MAX | | | t _{PLH} | 9B–11B | 9A-11A | Rχ = 13 Ω | 1.5 | 3.2 | 4 | 1.5 | 5 | 1.5 | 4.8 | ns | | tPHL | 90-110 | 9A-TTA | Κχ = 13 12 | 1.5 | 3.8 | 4.7 | 1.5 | 5.8 | 1.5 | 5.6 | 115 | | tPHL | 1B-8B | 1A-8A | Rχ = 13 Ω | 1.5 | 3.3 | 4.2 | 1.5 | 5 | 1.5 | 4.8 | ns | | t _{PLH} | 9B–11B | 9A-11A | P 26 O | 1.5 | 3.1 | 4 | 1.5 | 4.8 | 1.5 | 4.6 | ns | | tPHL | 90-110 | 9A-TTA | $R_X = 26 \Omega$ | 1.5 | 3.5 | 4.4 | 1.5 | 5.2 | 1.5 | 4.9 | 115 | | t _{PHL} | 1B-8B | 1A-8A | Rχ = 26 Ω | 1.5 | 3.1 | 4 | 1.5 | 4.6 | 1.5 | 4.4 | ns | | t _{PLH} | OD 44D | 44.04 | D | 1.5 | 3 | 3.8 | 1.5 | 4.7 | 1.5 | 4.5 | | | t _{PHL} | 9B–11B | 1A–8A | $R\chi = 56 \Omega$ | 1.5 | 3.3 | 4.2 | 1.50 | 5.1 | 1.5 | 4.7 | ns | | t _{PHL} | 1B-8B | 1A-8A | Rχ = 56 Ω | 1.5 | 3 | 4 | 1.5 | 4.6 | 1.5 | 4.4 | ns | | | В | А | R _X = Open | | 0.1 | 0.6 | 200 | 2 | | 2 | | | t _{sk(p)} | А | В | | | 0.4 | 0.8 | 220 | 2 | | 2 | ns | | , | В | А | Rχ = 26 Ω | | 0.3 | 0.8 | | 2 | | 2 | | | | В | Α | R _X = Open | | 0.3 | 0.7 | | 1.3 | | 1.3 | | | t _{sk(o)} | А | В | | | 0.7 | 1.1 | | 1.3 | | 1.3 | ns | | , , | В | А | $R_X = 26 \Omega$ | | 0.5 | 1 | | 1.3 | | 1.3 | | | t _t † | В | А | Rχ = 26 Ω | 0.5 | 0.8 | 1.5 | 0.5 | 1.5 | 0.5 | 1.5 | ns | | t _t ‡ | А | В | Rise or fall
time
10%–90% | 3.5 | 5.5 | 7.3 | 3.5 | 8.1 | 3.5 | 7.9 | ns | [†] t_t is measured between 1 V and 2 V of the output waveform. ## extended output characteristics over recommended ranges of supply voltage and operating free-air temperature, $C_L = 50$ pF (see Note 4 and Figures 1 and 2) | PARAMETER | FROM TO TEST CONDITIONS LOAD | | SN54ABTE16246 | | SN74ABTE16246 | UNIT | | |-----------------------|------------------------------|----------|---|--------------------------------|---------------|---------|------| | PARAMETER | (INPUT) | (OUTPUT) | TEST CONDITIONS | LOAD | MIN MAX | MIN MAX | UNIT | | * + 4 | А | В | V _{CC} = constant, | | 3 | 2.5 | no | | ^t sk(temp) | В | А | $\Delta T_A = 20^{\circ}C$ | $R\chi = 56 \Omega$ | 0 Len 4.5 | 4 | ns | | ^t sk(load) | В | А | V _{CC} = constant,
Temperature = constant | $R_X = 13, 26,$ or 56Ω | 4.5 | 4 | ns | NOTE 4: Limits are specified but not production tested. $[\]ddagger$ t_t is measured between 10% and 90% of the output waveform. NOTE 4: Limits are specified but not production tested. SCBS227E - JULY 1993 - REVISED MARCH 1997 ### PARAMETER MEASUREMENT INFORMATION - NOTES: A. Pulse skew, $t_{Sk(p)}$, is defined as the difference in propagation delay times t_{PLH1} and t_{PHL1} on the same terminal at identical operating conditions. - B. Output skew, $t_{SK(0)}$, is defined as the difference in propagation delay of the fastest and slowest paths on a single device that - originate at either a single input or multiple simultaneously switched inputs (e.g., $|t_{PLH1} t_{PLH2}|$). C. Temperature skew, $t_{sk(temp)}$, is the output skew of two devices, both having the same value of $v_{CC} \pm 1\%$ and with package temperature differences of 20°C. - D. Load skew, $t_{sk(load)}$, is measured with R_X in Figure 2 at 13 Ω for one unit and 56 Ω for the other unit. Figure 1. Voltage Waveforms for Extended Characteristics SCBS227E - JULY 1993 - REVISED MARCH 1997 ### PARAMETER MEASUREMENT INFORMATION | SWITCHING TABLE LOADS | S1 | S2 | |--|----|------| | tpLH/tpHL (9A-11A and B port) | Up | Open | | t _{PLH} /t _{PHL} (1A-8A) | Up | 7 V | | tPLZ/tPZL | Up | 7 V | | tpHZ/tpZH (except 1A-8A) | Up | Open | | EXTENDED
SWITCHING TABLE LOADS | S1 | S2 | |--------------------------------------|------|------| | tPLH/tPHL/t _{Sk} (A port) | Down | Х | | tpLH/tpHL/tsk (B port) | Up | Open | | t _t (A port) (see Note E) | Down | Х | | t _t (B port) (see Note F) | Up | Open | **PROPAGATION DELAY TIMES** NOTES: A. C_I includes probe and jig capacitance. - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f \leq 2.5 \text{ ns}$, $t_f \leq 2.5 \text{ ns}$. - D. The outputs are measured one at a time with one transition per measurement. - E. t_t is measured between 1 V and 2 V of the output waveform. - F. tt is measured between 10% and 90% of the output waveform. Figure 2. Load Circuit and Voltage Waveforms #### **IMPORTANT NOTICE** Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK. In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof. Copyright © 1998, Texas Instruments Incorporated